APPENDIX J

LATERAL PRESSURES DUE TO COMPACTION

J-1. <u>Design pressure envelope</u>. The design pressure envelope for nonyielding walls with compaction effects will be derived. The lateral pressure due to at-rest conditions is shown in Figure J-1.

Figure J-1. Lateral pressure due to at-rest conditions $(\gamma' = \gamma \text{ above water table}).$

The lateral pressure induced by a compaction roller line load is shown in Figure J-2.

Figure J-2. Lateral pressure induced by compaction roller line load.

In Figure J-2,

$$\Delta P_{\text{\tiny V}}^{\,\text{!`}} = \frac{2\,P}{\pi\,\text{\tiny Z}}$$
 where P is the roller load, lb/linear ft

$$\Delta P_h^{\prime} = \frac{2K_oP}{\pi z}$$
 where P is the roller load, lb/linear ft

The maximum lateral pressure occurs at $\ensuremath{\mathbf{z}}_{\ensuremath{\mathtt{cr}}}$ and the passive pressure is

$$P_{p}^{\dagger} = K_{p} \gamma^{\dagger} z \qquad [J-1]$$

Taking

$$K_{\mathbf{p}} = \frac{1}{K_{\mathbf{A}}}$$

and inserting this into Equation J-1 yields

$$P_{p}^{\dagger} = \frac{\gamma^{\dagger} z}{K_{A}}$$
 [J-2]

The horizontal pressure due to the earth and roller is

$$P_h' = K_o \gamma' z + \frac{2K_o P}{\pi z}$$
 [J-3]

Using Equations J-2 and J-3 and solving for the critical depth z yields

$$\frac{\gamma' z_{cr}}{K_a} = K_o \gamma' z_{cr} + \frac{2K_o P}{\pi z_{cr}}$$

$$\gamma' z_{cr}^2 = K_A K_o \gamma' z_{cr}^2 + \frac{2K_A K_o P}{\pi}$$

$$\gamma' z_{cr}^2 (1 - K_A K_o) = \frac{2K_A K_o P}{\pi}$$

Assuming $(1 - K_{\Delta}K_{\Omega}) \approx 1$

$$z_{cr} = \sqrt{\frac{2K_{A}K_{o}P}{\pi\gamma'}}$$

The horizontal pressure at z is

$$P_{h}' = \frac{\gamma' Z_{cr}}{K_{A}} = \sqrt{\frac{2K_{o}P\gamma'}{K_{A}\pi}}$$

The maximum pressure is constant below $\rm z_{cr}$ until it is exceeded by at-rest pressure, because the foregoing analysis represents each successive top lift. The design pressure envelope for nonyielding walls including the effects of compaction is shown in Figure J-3.

$$z_{cr} = \sqrt{\frac{2K_A K_o P}{\pi \gamma}}$$
 $z_2 = \sqrt{\frac{2P}{K_A K_o \pi \gamma}}$

Figure J-3. Design pressure envelope for nonyielding walls with compaction effects.